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ABSTRACT

This paper describes the principles, design, imple-
mentation, use, and performance of a sun tracker
for fixed reference orientation estimation. With rel-
atively simple, familiar, inexpensive and low power
off-the-shelf components and straightfoward model-
ing and calibration, a sun tracker can provide full
3-DOF orientation with accuracy well within a de-
gree of roll pitch and yaw, and without drift. This
can enable high precision long distance navigation in
a Mars relevant fashion, i.e. without use of physical
properties such as Earth’s magnetosphere or modern
infrastructure such as GPS. Most importantly, the
heading errors are fixed over time, unlike estimates
derived from dead reckoning or integration of inertial
rate sensors.

Key words: Sun tracker, sun sensor, camera calibra-
tion, position estimation.

1. INTRODUCTION

Celestial navigation, using measurements of the sun,
moon, and stars to estimate position, is an ancient
technique. Devices such as the kamal, astrolabe, oc-
tant, and sextant, and the geometric methods to in-
terpret measurements have guided explorers for hun-
dreds or thousands of years[3]. Today, star trackers
are used to estimate orientation of spacecraft and
sun trackers are often used to estimate orientation of
planetary rovers such as the MER rovers currently
on Mars.

Our application, the Life in the Atacama (LITA)
rover field campaign[12], requires Mars relevant po-
sition estimation with the desiderata that error esti-
mates are on the order of 5% of distance travelled,
which in turn requires heading accuracy of 3°. Drift
over time is unacceptable. Magnetic compasses do
not work on Mars, and integration of rate sensors
quickly yields larger errors.

Figure 1. Our sun tracker, in an enclosure with the
fisheye lens visible on top.

The operational principle of a sun tracker is straight-
forward. In general, the vectors pointing along the
gravity direction and towards the sun provide two
constraints on orientation. The only time the con-
straints are not independent is when the vectors
are colinear, e.g. at noon on the equator on the
equinox. With precise angular measurements the
constraints are practically always independent, par-
ticularly when operating at mid-latitudes.

Given a location on a planetary body, the gravity
vector can be computed with respect to the geoid
in a global coordinate frame. With a clock, the di-
rection toward the sun, or solar ephemeris, can be
predicted. Software packages such as CSPICE[1] fa-
cilitate these computations. Optical sensors such as
cameras and position sensing devices (PSD) can be
used to measure the solar direction in sensor coor-
dinates. Inclinometers can be used to measure the
gravity direction. The sun tracker can provide good
measurements as long as the sun is visible and the
gravitational direction is within the range of the sen-
sor. Estimating orientation is a matter of finding
the rotation that aligns sensor frame observations to
world frame vectors.



Fisheye lens —
Solar filter L _=_

Camera [ Lo o w—
Inclinometer M

Enclosure

Figure 2. Suntracker components.

This paper describes a sun tracker built from sim-
ple, low power, off-the-shelf components and used
on a planetary analog rover. The design, construc-
tion, mathematical modeling, calibration procedure,
pose estimation technique, and quantitative results
are presented.

2. SUN TRACKER DESIGN

Our sun tracker is shown in Figure 1, and is com-
prised of several components assembled as shown in
Figure 2. The components are described in some de-
tail below. The camera, optics, and inclinometer are
all assembled in an aluminum enclosure and commu-
nicate to a host computer which reads data from the
sensors simultaneously.

2.1. Camera and optics

The sun direction in the sensor coordinate frame is
measured by a camera with appropriate optics. The
sensor in our sun tracker is an off the shelf CCD im-
ager, a Point Grey Dragonfly”™. Position sensing
devices (PSD), which provide an analog signal pro-
portional to the location of the centroid of light on
the detector, may also be used[11].

CCD imagers provide several advantages over PSD’s
without adding significant disadvantages. Under
changing light levels, CCD pixel levels change with-
out affecting the sun centroid, while some PSD’s can
suffer bias problems. A PSD only returns one mea-
surement which can be corrupted by a reflection from
a nearby specular surface, while a CCD image can
be searched for more than one peak and rejected if a
second reflection is detected. CCD measurements re-
quire more processing, but the computation to find
single or multiple peaks and compute the centroid
is trivial and can be done in one pass. A standard
CCD camera offers 10 bits or more of position (210 =
1024 pixels) even without subpixel estimation. Us-
ing a CCD or CMOS imager makes use of a modular
system component. Our lab is familiar with CCD
cameras, can easily add them to the firewire bus on
our rover, and uses the same control and communi-
cation software which eases integration.

Figure 3. Sample sun tracker image. The only non-
dark region in the image is the projection of the sun.

The optics filter and focus sunlight onto the detec-
tor. There is a tradeoff between total field of view
(FOV) and angular resolution. Most available lenses
conform to a few standard mount types. Our system
uses an off the shelf fisheye microlens, the Omnitech
ORIFL190-3, which provides a 190° FOV. With an
active imaging area of nearly 768 pixels, this corre-
sponds to an average of about 1/4° per pixel while
the FOV covers slightly more than the whole sky.
Note that the apparent size of the sun from Earth is
roughly 1/2°.

Direct sunlight and bright scattered skylight cause
saturation and blooming on the imager. To miti-
gate this, our sun tracker includes a neutral den-
sity filter which transmits a small fraction of light.
The filter is a piece of AstroSolar™ mylar film
from Baader Planetarium with transmission coeffi-
cient T = 10738 = 0.000158, attached directly to
the rear flange of the lens.

Figure 3 shows an example sun tracker image. Im-
ages of the sky through the ND filter and fisheye
lens result in an image which is mostly black with
a white spot corresponding to the projection of the
sun on the image plane.

2.2. Inclinometer

The gravity direction is measured by an inclinometer
inside the same enclosure. Orientation accuracy for
the system is limited by the precision of the measure-
ments of sun and gravity direction, so an accurate in-
clinometer is required. The inclinometer used in our
sun tracker is a Crossbow CXTILT02EC, which has
a reported accuracy of 0.1° in roll and pitch. Because
the power consumption is low and the voltage range
matches the IEEE 1394 (firewire) spec, we power the
device using 12V DC from the firewire cable to elim-
inate extra wiring. The inclinometer communicates
through an RS-232 serial interface.



3. MODELING

There are many camera models used in computer
vison. Probably the most popular is Tsai’s model[9]
for projection with the Brown-Conrady model of lens
distortion[2]. The CAHVOR model[4] is popular
within NASA. These two are largely the same and
applicable to many real world cameras, but neither
handles fisheye lenses well. Extensions add more dis-
tortion terms to model fisheye lenses along with the
projective pinhole model[5, 6].

The model required for the sun tracker has different
criteria. We are only interested in the relationship
between image measurements and solar angles in the
camera frame, which depend on solar ephemeris and
the orientation of the sun tracker. We ignore the
standard projective geometry approach and instead
seek a mapping from solar angles directly to image
plane coordinates.

We denote the Cartesian unit vector to the sun
x = (x,9,2)7 and the corresponding spherical co-
ordinates © = (6, ¢)T with azimuth 6 and elevation
¢. We denote coordinate frames with subscripts, w
for world, ¢ for camera and 4 for inclinometer, and
rotations between frames with a subscript and su-
perscript for the two related frames, e.g. RS,.

The solar ephemeris Oy, is rotated to spherical cam-
era coordinates ®. by the rotation RY. This is car-
ried out by converting ®., to Xy, rotating by RY,

Xe = RYXw (1)
and converting x. to @.. Then the measurement is
z =h(Oc,p) (2)

where h is the measurement model parameterized by
p, and z. = (uc,v.)T the coordinates of the sun on
the image plane

p = a1d+ a2§52 + 030_53 + 040_54
u. = ug+ pcos(f.)
ve = v+ psin(f.) (3)

where ¢ = /2 — ¢ is the complement of elevation.
In terms of polar coordinates, the location of the sun
on the image plane is given by the radial term p,
modeled as a polynomial in elevation angle, and the
angular term 6., the solar azimuth. The image center
is (ug,vp)”, corresponding to ¢ = 7/2 or ¢ = 0.

The inclinometer reports roll a; and pitch 3; as the
slope along the z and y axis of the sensor (not the
roll and pitch corresponding to Euler RPY angles).
The measurements can be modeled by

a; = asin(R;(3,2))
Bi = asin(R,(3,1)) (4)

Figure 4. Composite of 1600 images taken by rotat-
ing the sun tracker on a pan tilt unit (PTU). The
images are used to calibrate the sensor.

4. CALIBRATION

Calibration is the estimation of the paremeters p =
(a1, as,as, a4, ug, vo, R:)T. This presents a chicken
and egg problem: neither the mapping in (3) nor the
true orientation is known, so both must be estimated
together. To disambiguate the problem, we put the
sensor on a pan tilt unit (PTU) mounted on a tripod,
and take a series of measurements at known pan and
tilt angles. A composite of 1600 calibration images is
shown in Figure 4. This data covers a significant por-
tion of the image plane, providing strong constraints
on the camera model.

Figure 5. Relationship between coordinate frames
during calibration.

The PTU provides relative orientation but absolute
orientation is not known. Absolute orientation is the
composition of rotations between the world (w), tri-
pod (t), PTU (p), inclinometer (i), and camera (c)
frames as shown in Figure 5. RY is assumed known
since the PTU is accurate and controllable. The ro-
tation between inclinometer and camera R is a nec-
essary part of the model. The other two rotations,
R} and R; add 6 nuisance parameters to the 9 pa-
rameters of interest in p. Then

R, = RLR'R,
R, = R,RIR,R] ()
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Figure 6. Predicted vs. actual image measurements
for the data in Figure 4
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Figure 7. Predicted vs. actual inclinometer measure-
ments for the data in Figure 4

Calibration is done by fitting the 15 parameters in
p using Levenberg-Marquardt[7]. We use numerical
differentiation to simplify implementation and make
it easier to experiment with sensor models. Since
calibration is done offline and verified, there is little
risk of being stuck with a poor solution. To improve
convergence, optimization starts with a lower order
model which assumes that R}, R} and R are yaw
only, and that as, as and a4 are zero, (linear radial
polynomial). This reduces the problem to 6 DOF.
When the initial model converges, the full 15 param-
eter model is initialized with the low order solution
and then optimized.

Figure 6 and 7 show the predicted and actual mea-
surements for the camera and inclinometer for an
example calibration. Figure 8 and 9 show the resid-
uals between predicted and actual measurements for
the camera and inclinometer. Note that the image
residuals are on the order of 0.25 pixel RMS, and the
inclinometer residuals are on the order of 0.1° RMS
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Figure 8. Image measurement residuals after calibra-
tion are on the order of 0.25 pizels RMS.
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Figure 9. Inclinometer measurement residuals after
calibration are on the order of 0.1 degrees RMS.

which matches the manufacturer’s specification. Fig-
ure 10 shows the convergence of the root mean square
error of the cost function during the two step cali-
bration process.

5. ESTIMATING ORIENTATION

The standard approach to estimating orientation for
sun trackers is to compute the unit vector towards
the sun by inverting the camera model, rotate the
vector according to the roll and pitch estimate from
an accelerometer or inclinometer, and then simply
subtract the azimuth direction of the sun vector from
the sensor observation from the solar azimuth given
by ephemeris[8]. This method is computationally
simple, but treats the two pieces of information dif-
ferently and does not offer an internal check for solu-
tion quality since each of the two steps is only ex-
actly properly constrained. That is, the roll and
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Figure 10. Convergence of residual between predicted
and actual measurements during calibration. Itera-
tions 1-6 show convergence of the low order model,
and iterations 7-10 the full model.

pitch measurements are used exactly to rotate the
observed sun vector, the resulting vector is then re-
duced to a one dimensional observation, and that one
dimensional constraint is used to compute the yaw
estimate.

Our method instead seeks to find the orientation such
that the predicted measurements best match the ac-
tual measurements in a weighted least squares sense.
This is again a nonlinear optimization problem: find
the orientation ¢ such that the cost function

J = (z —h(q))"=7"(z — h(q)) (6)

is minimized, where z is a vector containing the
image coordinates of the sun location and the roll
and pitch measurements from the inclinometer, and
3 is the measurement covariance, which is a diag-
onal matrix with o0 = 0cor = 0.25 pixels and
Oroll = Opiteh = 0.1°. The measurement model h
is the one described in Section 4 with the model pa-
rameters p fixed after calibration and the quaternion
q used to rotate the ephemeris to compute .. In
reality, the measurement prediction requires the time
and an approximate location so that ephemeris can
be computed, but these are fixed for a given obser-
vation so we leave them out for notational conve-
nience. To estimate orientation we seek the ¢ which
minimizes (6).

Optimization problems involving rotations are sensi-
tive to the parameterization of rotations, with unit
quaternions earning their deserved status as a fa-
vorite method due to better convergence. But even
searching over unit quaternions is a potentially messy
nonlinear problem, so we estimate orientation in two
steps. The first step is an initial estimate that
does not necessarily minimize (6) but is computed
in closed form. The second step optimizes the cost
function in (6) directly.

Computing the initial orientation in closed form is
done in a novel way. The camera and inclinometer
observations can be thought of as measurements of
the solar and gravitational directions in sensor co-
ordinates. That is, the camera model in (3) can be
inverted so that the location of the sun on the im-
age plane can be converted to a unit vector point-
ing to the sun in camera coordinates, and the ob-
served roll and pitch measurements can be used to
compute a unit vector pointing along gravity in sen-
sor coordinates. Solar ephemeris and the reference
geoid provide unit vectors toward the sun and along
gravity in world coordinates. These vectors can be
aligned in closed form using part of the algorithm
due to Umeyamal[10]. The full algorithm is used to
compute similarity transforms. A preprocessing step
removes scale and translation, after which the algo-
rithm finds the rotation between the corresponding
vectors in closed form. Our application requires only
the rotation fitting step to recover an estimate for
RS, and the two pairs of corresponding vectors are
sufficient for Umeyama’s algorithm. Computation
is not prohibitive; the algorithm constructs a 3 x 3
matrix, computes its singular value decomposition
(SVD), normalizes and checks the singular values in
S and then multiplies the U, S and V matrices to
recover the rotation.

The second step in estimating orientation minimizes
(6) directly using Levenberg-Marquardt[7]. The esti-
mate from rotation fitting is used as an initial guess
for the unit quaternion ¢ and L-M is iterated to con-
vergence. The application of L-M to this problem is
straightforward. Computational complexity is again
not an issue. Iterations require the computation of
4 x 4 Jacobians (derivatives of four measurements
with respect to four quaternion parameters) and the
solution of a system of 4 linear equations. In prac-
tice only 3 to 6 iterations are required to minimize
(6) sufficiently.

Provided the estimate is a global minimum, the ori-
entation solution is optimal with respect to the cost
function and observation. The initial guess can help
ensure the solution is the global minimum since a
closed form solution exists, but there is still a need to
validate the estimate. The camera and inclinometer
provide four constraints for three rotational degrees
of freedom. This means that the solution quality
can be evaluated after minimizing (6) by testing the
residual against a chi-square with 1 degree of free-
dom. In practice, solutions which have a large resid-
ual are rejected since the best orientation estimate
does not agree well with the measurement model and
measurement uncertainties. This can happen if the
camera sees a unique peak which is actually a strong
reflection of the sun, or if the inclinometer measure-
ment is compromised due to rover acceleration.



6. RESULTS

To test the accuracy of orientation estimates, we cal-
ibrate the sensor using a training set and then test
orientation estimation with a test set. The calibra-
tion procedure is explained in Section 4 and orienta-
tion estimation is explained in Section 5.

Quantifying the errors in orientation estimates is dif-
ficult. The sensor orientation is estimated to within
a fraction of a degree, but we lack a simple and in-
dependent method for measuring the ground truth
orientation with similar precision.

To work around this, we use the unknown but fixed
relationships in Figure 5 to help evaluate perfor-
mance. It takes about an hour to collect 1600 images,
stepping through 80 pan angles and 20 tilt angles.
We can collect several data sets in a day and assume
that R! and R;'), corresponding to the tripod orien-
tation and the sensor mounting on the PTU, are con-
stant for all data sets. Thus the fixed relationships
in Figure 5 estimated using the calibration set can
be used to evaluate the test set. The PTU provides
R? | so we can recover the orientation of the sensor by
composing the rotations using (4). This orientation
is considered to be the ground truth orientation.

Figure 11 shows the roll, pitch, and yaw estimation
results for the test set. Deviations are very small
compared to the range of orientations. Figure 12
shows histograms of the deviations between ground
truth and estimated orientation parameters. For the
test data set, the roll and pitch estimates match the
ground truth to within about 0.15° RMSE over the
full range of orientations. This range covers most
of the expected orientations for the rover, e.g. what
is normally considered “safe”. The yaw RMSE is
around 0.4°. The error is within 1° 89.75% of the
time and is never worse than 2°. This is well within
the goal of 3° derived from the position estimation
requirement of 5% distance travelled.

Results for position estimation for long traverses is
beyond the scope of this paper, since position error
depends on the fusion of multiple sources of informa-
tion. These results will be reported elsewhere.
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